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Abstract

The steady state heat transfer characteristics of a thin vertical strip with internal heat generation is studied in this
work. The nondimensional temperature distribution in the strip is obtained as a function of the following
parameters: (a) the intensity and distribution of the internal heat sources, (b) the aspect ratio of the strip, (c) the
longitudinal heat conductance of the strip and (d) the Prandtl number of the fluid. Both the thermally thin and the
thick wall approximations are considered in this paper. The total thermal energy or averaged temperature of the
strip is found to decrease as the influence of the longitudinal heat conduction effects in the strip decreases in the
thermally thin wall regime. After reaching a minimum, it increases again in the thermally thick wall regime. © 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

The fundamental studies of heat transfer processes
with coupled effects of conduction and free or natural
convection is extremely important because it appears
in many practical and industrial devices, like building
insulation, hot-film sensors, fin heat transfer, energy
storage in enclosures, etc. However, the two mechan-
isms are generally decoupled and many works have
appeared in the literature studying the natural convec-
tive heat transfer from vertical solid surfaces with pre-
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scribed surface temperature or heat flux. Since the
classical analysis of Pohlhausen reported in the exper-
imental paper of Schmidt and Beckmann [1], extensive
studies of those pre-determined boundary conditions
for the solid surfaces, have been developed in order to
have a better knowledge of these processes. An excel-
lent review can be found in Gebhart et al. [2]. How-
ever, a priori specification of temperature or heat
transfer distribution at the wall represents a serious
shortcoming of these analyses. In some cases, the con-
ductive mechanisms in bounding walls directly coupled
with the natural convective processes, have been ana-
lyzed in the literature. The natural convection bound-
ary layer flow generated adjacent to a semi-infinite
vertical slab of finite thickness was considered by Kel-
leher and Yang [3]. Similarly, Lock and Gunn [4]
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Nomenclature

c specific heat of the natural fluid flow

Cw specific heat of the strip

f nondimensional stream function introduced
in Eq. (5)

Gy nondimensional temperature gradient,
Go = —dg/dnlg

G(n) nondimensional temperature gradient,
Gi(n) = —deby,,/dnly

g reduced nondimensional stream function
introduced in Eq. (2)

g acceleration of gravity

h thickness of the strip

L length of the strip

Pr Prandtl number of the natural fluid flow

Ra.  Rayleigh number of the natural fluid flow

T temperature

T~ free stream temperature of the natural fluid

flow
x, y Cartesian coordinates
z nondimensional normal coordinate of the

strip defined in Eq. (4)

Greek symbols

o heat conduction  parameter, o= Ayh/
(ALRa'*)

0 thickness of the natural boundary layer

¢ reduced nondimensional temperature intro-

duced in Eq. (2)
aspect ratio of the strip, ¢ = h/L

™

n nondimensional normal coordinate for the
natural fluid flow introduced in Eq. (4)

A thermal conductivity of the natural fluid flow

Aw plate thermal conductivity of the strip

v kinematic coefficient of viscosity of the natu-

ral fluid flow
p density of the fluid
P density of the strip

& nondimensional coordinate introduced in Eq.
(@)
0 nondimensional temperature of the natural

fluid flow introduced in Eq. (5)

Ow nondimensional temperature of the strip
introduced in Eq. (5)

b4 nondimensional  longitudinal
defined in Eq. (4)

coordinate

showed that the temperature distribution on a vertical
flat plate is strongly influenced by the interaction with
the adjacent boundary layer. Zinnes [5] studied the
laminar boundary layer flow along a vertical flat plate
with specified uniform heat flux at the surface, includ-
ing the associated conductive transport in the plate. In
this direction, Chen and Fang [6] using numerical
methods, studied the conjugate problem along a verti-
cal plate fin. Later, Vynnycky and Kimura [7] solved
analytically and numerically the coupled elliptic gov-
erning equations for the conjugate free convection due
to a vertical plate adjacent to a semi-infinite region.
They confirmed that for high values of the Rayleigh
number, the results give good agreement with a bound-
ary layer formulation for the fluid phases. Merkin and
Pop [8] analyzed the same problem with a boundary
layer scheme and neglecting the axial heat conduction
in the plate. They showed the influence of the Prandtl
number for this conjugate free convection problem.
Kimura et al. [9] studied experimentally the heat trans-
fer process of a vertical heated slab. They developed a
simple theory by assuming a uniform temperature at
one surface of the slab. Clearly, the analysis does not
reflect the experimental configuration, because the tem-
perature itself is part of the solution of the conjugate
heat transfer problem. Cordova and Trevifio [10] clari-
fied the role of the longitudinal heat transfer effects of

a vertical thin plate in a natural convective cooling
process and recently Trevifio et al. [11] obtained simi-
lar results for a forced convective flow. They studied
the thermally thin and thick wall regimes where simpli-
fying assumptions can be employed to obtain approxi-
mate analytical solutions. Therefore, the importance of
conjugated heat transfer problems is widely recognized
in the literature and many different numerical and ana-
lytical methods have been applied for the above simple
and conventional configurations. However in this gen-
eral context, there are more complex situations, where
the influence of other physical aspects like the elec-
tronic circuitry cooling with finite heat transfer gener-
ation rates, suggests new frontiers in conjugated heat
problems. In these devices, the steady increase in the
volumetric heat generation rates and the thermal man-
agement are decisive considerations in the design of
chips with their packaging [12,13]. It is well known
that the electronic behavior depends strongly on the
temperature of the chip, the temperature gradients
among the components and the associated thermal fail-
ures resulting from an overhigh chip temperature
differences among the components related to critical
electrical paths. Therefore, these failures are not to be
only originated by irreversible mechanical fractures.
This aspect was reported in Ref. [14]. In most appli-
cations, the thermal conditions on the electronic pack-
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age surfaces are unknown and for a given heat gener-
ation rate, the temperature profiles within the heat
source, including the location and the maximum
values, are of primordial importance to obtain a high
performance of the various electronic components
within a specified range of temperatures. Several
authors have pointed out these and related aspects,
which can be found in Incropera [15] and Jaluria [16].
Later, Sathe and Joshi [17] showed the importance of
the coupled heat transfer process between a heat gener-
ating substrate-mounted protrusion and a liquid-filled
two-dimensional enclosure. In these works, the natural
convection from discrete heat sources to extensive
ambient air, is selected in comparison with other mech-
anisms of cooling. For simplicity, the flush heaters
were idealized as uniform heat sources. On the other
hand, several works have appeared in the literature to
analyze the electronic cooling chip problem with forced
flows. Recently, a well documented state of the art can
be found in Cole [18].

Following the advantages of passive cooling mech-
anism by natural convection, which are characterized
by simplicity of design, absence of noise and high re-
liability, the main objective of this work is to obtain,
using asymptotic perturbation as well numerical tech-
niques, the temperature distribution in a thin vertical
embedded strip with non-uniform internal heat gener-
ation. For very large values of the Rayleigh number,
Ra, to be defined later, a natural upstream boundary
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A

Fig. 1. Schematic of the heat transfer problem.

layer develops, causing a permanent heat transfer pro-
cess controlled by the internal heat generation on the
plate.

2. Order of magnitude analysis and formulation

Consider a vertical heat conducting strip of length L
and thickness /4, which is totally embedded in a vertical
flat plate, except the right face of the strip which con-
tacts a fluid with temperature 7., as shown in Fig. 1.
Heat is generated internally with a non-uniform volu-
metric rate w. For simplicity, the left, upper and lower
walls are supposed to be adiabatic. In order to satisfy
it, the ratio of the thermal conductivity of the flat
plate to the thermal conductivity of the strip is
assumed to be vanishingly small compared with unity.
There are many practical situations where it is a
reasonable and well documented assumption [17]. In
this simple case, the conjugated heat transfer process
between the chip and the cooling flow is isolated. The
lower right corner of the strip coincides with the origin
of a Cartesian coordinate system whose y-axis points
out in the normal direction to the plate and its x-axis
points out in the plate’s longitudinal direction. The
temperature variations induce a natural convection
flow due to the corresponding density changes. An
order of magnitude analysis shows that these motions
occur in boundary layers with thickness of order
L/Ra'*, for large values of the Rayleigh number,
Ra = gfATPrL?/v?. Here, g is the acceleration of grav-
ity, f and v are thermal expansion coefficients and kin-
ematic viscosities of the fluid. Pr denote the Prandtl
number, Pr = pvc//, where p is the density, ¢ is the
specific heat and A is the thermal conductivity of fluid,
respectively. AT is the actual temperature difference
across the fluid layer, which is in fact to be obtained
from the analysis. After defining the Rayleigh number
with a characteristic temperature difference, AT, to be
defined later, Ra. = gBAT.PrL?/v?, the order of mag-
nitude of the boundary layer thickness and the induced
velocity are given by

1/4 12 12

L (AT, Ral’?v ( AT

5~ﬁ(—) and o~ e "( ) )
Ra/*\ AT PrL \ AT,

The order of magnitude of the heat flux across the
fluid is then

AATY*Ral/*  ),AT,

~ ~wh. 2
LAT)7 A wh ()

In these relationships, p,,, ¢,, and 4, represent the den-
sity, specific heat and thermal conductivity of the strip
material. AT, is the characteristic normal temperature
drop at the strip and w = (1/L) fOL wdx is the averaged



2742 F. Méndez, C. Treviiio | Int. J. Heat Mass Transfer 43 (2000) 2739-2748

volumetric heat production term. The last term in re-
lation (2) arises from the thermal energy generated in-
ternally in the strip. From relationships (2), we obtain
that AT, must satisfy

N AT, «

AT.Ra!/*~ WL _
A

Here AT* is related to the heat generated internally. If
we define the Rayleigh number as Ra* = Ra(AT¥),
then Ra. = (Ra*)*® and AT, = AT*/(Ra*)'. ¢ is the
aspect ratio of the strip, ¢ = #/L and is to be assumed
very small compared with unity. Parameter
o« = Jywh/(ZLRal/*) is the nondimensional longitudinal
heat conductance of the strip and corresponds to the
ratio of the characteristic residence time in the fluid to
the longitudinal diffusion time in the strip. « then gives
the influence of the longitudinal heat conduction
through the strip in the heat transfer process. This par-
ameter can have values much larger or much smaller
than unity, depending on the strip material. For values
such asa/e? > 1, the temperature variations in the nor-
mal direction of the strip can be neglected, being very
small, of order /o, compared with the temperature
differences in the fluid. That is AT, « AT.. This
regime is called the thermally thin wall regime. For
values of a/e?~1, the temperature variations in both
directions of the strip now are very important and are
of the same order of magnitude of the temperature
differences in the fluid. This regime is called the ther-
mally thick wall regime. In this regime because ¢ < 1,
the longitudinal heat conduction through the strip is
very small and can be neglected. Due to the singular
character of the limit «—0, the longitudinal heat con-
duction term is to be retained only in thin layers close
to the vertical edges of the strip, in order to achieve
the adiabatic boundary conditions. However, these
thin heat conduction layers have only local influence.
For reference, we notice here the correspondence
® = ¢ = & /o with the wall parameter w of Anderson
and Bejan [19] and the conjugate parameter o of
Kimura et al. [9].

In order to derive the nondimensional governing
equations, we introduce the following nondimensional
independent variables

x _p iy y
o T 0

X:Z> "I—Rac =

together with the nondimensional dependent variables

Pry T-Tx

_ _ Tw - Too
T VRa A AT, '

0, = 5
=
Here, y and f are the dimensional and non-dimen-
sional stream functions defined in the usual way, re-
spectively. The nondimensional balance equations,

using the well-known Boussinesq and boundary layer
approximations for large values of the Rayleigh num-
ber, then take the form

820 3 00 afa0  afao
e+ =l — ©)
Nt 4o dndy 9y dn
3? 1| 1/af\* 3.0
_f + 0= —| = _f __f_
on’ Pr{2\an 4" on?
)]
af *f  af 3%
+x\ 5 -5
andydn Iy dn
for the fluid and
9%0,, o 3%0, w
el =0 8
x 0y &2 9z2 W ’ ®
for the strip. The boundary conditions are given by
9 90, 230
f_ _f =U—= GM = - 6—_ =
an 9z ayl/*an 9)
at n=z=
90, =0 atz= -1 (10)
0z
a0,
=0 fory=0andy =1 11
dy
%};:9:0 for n— o0. (12)

In general, this system of elliptic equations can be nu-
merically integrated. In the following section we
explore asymptotic solutions in both, the thermally
thin and thick wall regimes.

3. Thermally thin wall regime

As mentioned before, for very large values of o/e>
compared with unity, the temperature variations in the
normal direction in the strip can be neglected and the
nondimensional temperature is, in a first approxi-
mation, only a function of the longitudinal coordinate
%- In this regime the characteristic diffusion time in the
normal direction thwcw//lw is very small compared
with the residence time L/u.. Thus, the integral form
of the nondimensional energy equation for the strip (8)
can be obtained by integrating along the normal coor-
dinate and after applying the boundary conditions (9)
and (10), we get
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d%o,, w 1 90
= — =0 . 13
dy? w X1/4 an =0 (13)

This equation must be solved with the adiabatic con-
ditions for the lateral surfaces of the strip given by Eq.
(11). In the following subsection we present the asymp-
totic solution for « > 1, for this thermally thin wall
regime. For values of o of order unity, the problem
must be solved numerically.

3.1. Asymptotic limit o > 1

From the physical point of view the temperature
variations in the normal direction are negligible com-
pared with the corresponding temperature differences
in the fluid. This fact was deduced by an order of mag-
nitude analysis in the previous section for the ther-
mally wall regime, through relationship (3). Large
values of the parameter o« can be obtained by increas-
ing the thermal conductivity and the aspect ratio of
the strip. In this limit, the non-dimensional tempera-
ture of the plate changes very little in the longitudinal
direction, of order a~!. For a thermally thin wall, this
conjugate heat transfer problem can be studied in the
asymptotic limit «— o0, assuming the following expan-
sion
1
J

EOW‘(X)’ Q= Z?Q/(X’ ’7) (14)
=0

gk

0, =

J

Il
o

with Q corresponding to any property of the fluid, like
f or 0. Introducing the above relationships (14) into
the non-dimensional governing Eq. (13) for the plate,
we obtain the following set of equations

dzewo -0 dz(‘)wl w 1 890

dy2 T 7 dy? w4 an 0
d%0,,; 1 90,

2/ = 2 forallj > 1. (15)
dy x1/4 on |

The problem is to be solved with the following adia-
batic boundary conditions

%:0 aty =0, 1forall;. (16)
dy

The leading order variable 0, must be a constant to
be determined below. This value can be found after
integrating the first order equation (15), with the corre-
sponding adiabatic conditions at both edges, giving
dfo/dnl,— = —3/4. The solution of the leading order
equations for the fluid (see the Appendix for details)
are self-similar and can be readily obtained as [20]

dby 5/4 3
ah;:o = _GO(.)Mé) = _Za (17)
where Gy is the fluid nondimensional temperature
gradient at the strip for the normalized case and is
given by

(18)

2Pr/5 14
1+2Prl/2 +2Pr

Go(Pr)~ % [

Thus, the leading order solution for the nondimen-
sional temperature of the strip is

O = | ——— " 19
“‘0_[460(Pr)] ' 19

Introducing the solution for 0,0 into the first order
equation (15) for 6, this takes the form

d20,‘«1 w 60934)4
O :_54- Iz (20)

with the boundary conditions given by Eq. (16). The
solution to this equation is given by

01 = by + 177/4)67/4 + b)11+2Xm+2a (21)

where by is to be obtained from the second-order
equation (15), b74 =4/7 and bpo =—1/(m+2). In
this case we represented for simplicity the normalized
internal  heat  production function w/w  as
w/w = (1 +m)y™. The exponent m then represents the
distribution of the internal heat sources in the strip.
m =0 yields a spatially uniform function and m > 0
generates functions that rise monotonically along the
plate and for larger values of m, shifts the distributions
towards y = 1.

Integrating Eq. (15) for j = 2 and applying the adia-
batic boundary conditions at both edges, we obtain

T T T T T T
1.4+ N
aAl
aaaat
e

A -
AA _g-A-0
l'l:l:l:l:.:.‘.. ﬂ

—u— Pr=0.72 T
—e— Pr=1
—A— pr=%

0.0 T T T T

Fig. 2. Values of the nondimensional temperature gradients
G (n, Pr) as a function of n, for different values of the Prandtl
number, Pr =0.72, 1 and oo.
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! d20w2 la01 dy
dy=—| &2, <L =o. 2
J dy? Jo an 0 =" @2

In the Appendix we show that the nondimensional
gradient of the first order solution is given by

30, 1/4
Ty 10 =0k >

n=0, 7/4, m+2

buy"Gi(n). (23)

Introducing Eq. (23) in (22) we obtain the value of the
constant by as

bo

3 Gi(m+2) 8
- ——=Gi(7/4) . 24
4G1(0)|:(m+2)(m+11/4) 35007/9 24)
The functions G;(n) are obtained after solving the fol-
lowing linear set of ordinary differential equations for
the boundary layer equations (see Appendix). Fig. 2
shows G| as a function of n and three different values
of the Prandtl number, Pr =0.72, 1 and oo. Similar to
Gy, G is a monotonic increasing function with Pr and
m.

The averaged nondimensional temperature, up to
terms of order 1/a, is then given by

1
1-
Ow - J 011'd1 = OWO + _Owl
0 o

PR Gi(m+2)
- “"”L&{46.(0)[(m+2)(m+11/4)

8 16 1
_ﬁG‘W“)] T (m+2)(m+3)}' @5

For Pr =1, an excellent correlation gives

T T T T
0.02 b
—a— Pr=0.72
—e— Pr=1
0.004 —A— Pr=® .
A_ 4
< -0.02+ A L
Aa,
Aaa,
t.: 2. —~A—A
-0.04 S, 1
\l:|:.:.
'0-06 T T T T
-1 0 1 2 3 4

Fig. 3. First order solution for the nondimensional overall
thermal energy of the strip for the thermally thin wall regime,
as a function of the distribution parameter m, for different
values of the Prandtl number.

- 1
0, ~ 1.6572 + ;[ —0.00174 — 0.03244m

+0.01182m% — 0.00286m° + 0.0003m* ]
+0(™2). (26)

Fig. 3 shows 6, as a function of the distribution par-
ameter m for three different values of the Prandtl num-
ber. For positive values of m, this function is always
negative, showing that the overall thermal energy of
the plate decreases with decreasing values of o in the
thermally thin wall regime.

3.2. Asymptotic limit o—0

The limiting behavior in this regime is obtained in
the limit «—0, but with o/e? > 1. In this case the
longitudinal heat conduction in the strip is very small
and can be neglected except in regions close to the
edges of the plate. From Eq. (13) with ¢ =0, we
obtain

a0 )
= = _211/4 = —(1 + m)y" VA, 27
1 ly=o W

With this known heat flux distribution, the fluid gov-
erning Egs. (6) and (7) and the nondimensional tem-
perature of the plate (Eq. (8)) with the corresponding
boundary conditions can be solved with a simple
scheme. Using the invariance property of the boundary
layer equations shown in the Appendix, we introduce
the following variables

n=7n. f=7f 0=y0() and0,=y00). (28
It can be easily shown that for this case

4 1 1/4
Sl s:—t:—m+5/, 29)

r

and the problem of the fluid is reduced to solve a con-
ventional heat transfer problem with a known uniform
heat flux distribution at the surface of the wall. There-
fore, the nondimensional temperature of the plate is
given by

0,, = 0(0), 4175, (30)

and (;(O) is to be obtained from solving the nonlinear
set of ordinary differential equations

s @ s i

2~ ~~ - -
d-0 m—}—4d_9f_(4m+1)0d_j_0 G31)
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. 2 -
&f - 1| em+3)[(df\ (m+4)-df
S+0=—|—F =] - : 2
dii? + Pr 5 di 5 / di? (32)
with the boundary conditions
do - df
—~+(1—|—m):f:—]j:0 atj =0 (33)
di di
. df
0= —{ =0 fory—o0. (34)
di

In Fig. 4 é(O) is shown as a function of m, for three
different values of the Prandtl number. It represents
the nondimensional temperature at y = 1. It means
that the maximum temperature at the strip is achieved
for increasing values of m. However, the averaged non-
dimensional temperature

5
T 4Am+6

0., 0(0), (35)

decreases with m. 0, is also plotted in Fig. 4 for differ-
ent values of the Prandtl number.

4. Thermally thick wall regime

In this regime, the longitudinal heat conduction is
also very small and is to be neglected. The energy bal-

ance equation for the plate (Eq. (8)) then reduces to
820, &2

80 S myg. (36)
0z o

Eq. (36) has to be solved with the boundary con-
ditions:

5-0 T T T T
—
4.5 /8/5 i
4.0 ::: Pl’iﬂ. 72 B/B /A/:
Pr=1 5 = A
3.5 A Pr=°°/ = /A/A 1
.0 6(0, _
3.0 : /B/A/A (©)
2.5 /A 4
2.0 —é‘% .
1.5 —&\B\UNU B
10 A\A\Ajgtgjg:g:g:g:E
0.5 b
0.0 T T T T
0 1 2 3 5
m

Fig. 4. Solution for the asymptotic limit of o = 0 for the ther-
mally thin wall regime. The functions 6(0) and the nondimen-
sional overall thermal energy of the strip 6,, as a function of
the distribution parameter m, for different values of the
Prandtl number.

2
00, 0 : a0,, & 90

= tz = — = ——
5s atz 9z Aoy 37)

at n=z=0.

Integrating Eq. (36) in the normal z-direction and
applying the boundary conditions (37), we obtain

20
%m=—u+mwﬂm, (38)

which is independent of ¢ and «. The nondimensional
temperature of the plate is then

(1 +m)e®
Qw = 911':4 - ?X (Z + 22/2)’ (39)

where 0,, is the nondimensional temperature at the
upper surface of the plate 0, = 0(0)y*"+D/> and is
exactly the same as that obtained for the thermally
thin wall regime. The averaged nondimensional tem-
perature is then

5

0, =
4m + 6

2
60) + 2= (40)
Ja

In the limit of &2/a—0, the total thermal energy of the
strip in this regime is exactly the same as for the case
of 0—0, for the thermally thin wall regime given by
Eq. (35).

5. Results and discussion

In order to validate the analytical results, the system
of equations for the thermally thin wall regime were
integrated numerically using the quasi-linearization
technique for the boundary layer equations and the
integrated form of the strip equation (13). The bound-

1.0

23 —o— m=0

| —o—=0.5
08 —ba— =1 i

: —v— =1.5

1 Thermally thin wall regime
Pr=1
0.7 T T T T T
10° 107 10" 10° 10' 10°

Fig. 5. Numerical solution for the normalized overall thermal
energy of the strip as a function of «, for different values of
the distribution parameter m. The calculations were done for
a Prandtl number, Pr=1.
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ary conditions in the fluid for n— oo uses a finite mesh
point, 7, chosen by making numerical experiments by
increasing 7., until a non-significant change in the sol-
ution is obtained (for Pr=1, 5, =9 produces an
error in the solution less than 1 x 10~'9). The solution
of the governing equations for the case of Pr— oo was
obtained using the boundary condition 8%f/dn> =0
instead of 9f/9n =0 at n =#,,. Because the non lin-
earity of the boundary layer equations, it was necess-
ary to implement an iterative method based on the
introduction of a pseudo-transient term in Eq. (13),
with a convergence parameter lower than 1 x 10710,
The mesh used for the balance equations were 200 x
200, for the longitudinal and normal directions and a
pseudo-time step not larger than 0.01.

Figs. 5 and 6 show the numerical calculations with
Pr=1 and ¢ =0.1 for the normalized overall nondi-
mensional thermal energy of the strip 0,,/0,, as a func-
tion of o/e’. In Fig. 5, we plot the corresponding
results for the thermally thin wall regime. For large
values of o, the temperature of the plate is independent
of m. However, as the value of o decreases, the overall
thermal energy of the strip decreases and this is ampli-
fied for increasing values of m as was anticipated in
Eq. (25). As o reaches values of order &2, the overall
thermal energy of the strip reaches practically a mini-
mum value. In Fig. 6 we show the numerical results
for the thermally thin wall regime compared with the
analytical results for the thermally thin and thick wall
regimes, for m = 0. For large values of o, the asymp-
totic solution obtained in the limit o— o0, given by
Eq. (25), provides accurate results for values of
o > 0.5. As the value of « decreases further, the sol-
ution in the thermally thin wall regime reaches asymp-
totically the solution deduced for a—0. However, for
values of « of order 2, the thermally thin wall regime

2'0 T T T T T
—0O— Thermally thin wall regime (numerical)
—O— Thermally thick wall regime (asym.)
1.9 o\ --4A---Thermally thin wall regime (asym.)

Fig. 6. Numerical solution for the normalized overall thermal
energy of the strip as a function of o for m =0, Pr=1, for
the thermally thin wall regime. The analytical solutions for
the thermally thin and thick wall regimes given by Egs. (25)
and (40) respectively, are also plotted with a value of ¢ = 0.1.

is not more appropriate and the averaged temperature
of the strip will increase with decreasing values of o.
The solution then becomes closer to the analytical sol-
ution obtained for the thermally thick wall regime
given by Eq. (40). The minimum value of the overall
thermal energy is not predicted by the thermally thin
and thick wall regimes. The minimum value is pro-
duced in the transition region from thin to thick wall
regimes and can be obtained by solving the full energy
equation for the strip.

Fig. 7 shows the nondimensional temperature distri-
bution 0,, as a function of the normalized longitudinal
coordinate y, for different values of the parameter o.
The calculations were done with Pr =1 and m = 0 for
the thermally thin wall regime. The temperature is
almost flat for values of a> 1. For smaller values of o,
the temperature decreases strongly at the upper end of
the plate and increases at the lower end.

As illustration, a numerical computation was per-
formed using air as the cooling fluid at 7, = 300 K.
The numerical data of the thermal properties was
taken from Sathe [17] and Incropera [21]. Using a strip
of 5 cm length, 0.5 cm thickness, with a volumetric
heat production rate of 40 kW/m?>, we obtain the fol-
lowing values for the important parameters:
AT*=381.1 K, AT, =177 K, Ra*=4.56x 10°,
Ra. =2.12 x 10° and thus o = 0.465 and «/e’> = 46.5.
With this value of « and using Fig. 6, we obtain
0,, >~ 1.63. Remembering that Ty = Too + AT:0,, the
average temperature of the strip in physical units is
T,,~328.9 K. In this numerical case, the limit of ther-
mally thin flat plate prevails with a value of o~ 1. The
expected temperature gradient in the streamwise direc-
tion of the strip is, using Eq. (21), AT./(14aL)~5.4 K/
cm. The resulting value of the temperature gradient
shows that natural cooling process must be used with
caution to avoid large thermal stresses, insofar as the
strip is embedded in a material with a very different

1.9 T T T T
1.8 =
1.7+ - o N A —
1.6 B
1.5 —=— =100 ]
1.4+ —e—10 B
1.3+ —A—1 ]
& 1.2] pret v ]
= ——.1 1
1.1+ ——.05 ]
1.0 . . —x%—.01 b
0.9 Thermally thin wall regime 005 b
—.001
0.8 —+—.0005 ]
0.7 —0—.0001 ]
0.6 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

X

Fig. 7. Numerical solution for the nondimensional tempera-
ture of the strip as a function of y, for different values of «.
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thermal conductivity. A better operation condition can
be obtained by increasing the value of «, in order to
reach lower values of the temperature gradient.
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Appendix

In this appendix we derive the asymptotic solution
for the boundary layer governing equations for the
limit a—o00. Due to the fact that the boundary layer
Egs. (6) and (7) are invariant under the group of trans-
formation

0=>B0, n==B"""*n, f=B" (A1)

it is convenient to normalize the variables at least for
the leading term equations. Introducing the new vari-
ables

1/4 1/4
0=0w¢, n="04"¢ andf=0y4g, (A2)

the boundary layer equations now take the form

Ve L{ {a_gi_a_gi}

3& 3ED79E 0108
+305¢ 2_§ @ (A3)
2] 0¢ 4% 9
¢ 3 3¢  [dgdp dgd¢
PR R P PR P T A4
R X[aé oy 0708 (A4)
Assuming a series solution of the form
- 1 © 1
¢ = X(;;(f)j(% &) and g= 20:;&_( (AS)
J= =

the leading term form of the boundary layer equations
reduce to the classical constant temperature case given
by

&g 1Tdge 1> 3 dg

G = { [dé] —28 déz} (A6)
2

d(/;0+3 depy o, A7)

dé s

with the boundary conditions

dg
¢0_1:d_§°:g0:0 até =0 (A8)
dgo _
O = ¢y =0 for—oo0. (A9)

The solution to these Eqs. (A6)—(A9) can be found
elsewhere [20] and the nondimensional temperature
gradient at the wall is then given by a very good corre-
lation

d¢o

3 2P /4
_G Pr)~ — —
olPr)~ =4 [5(1 FoPrn gy 2P1‘)]

(A10)

Integrating twice Eq. (20), gives that 6, can be rep-
resented by the summation of three terms

0= Y b (AlD)
n=0, 7/4, m+2

Therefore, g; and ¢, can also be written as

b
a= Yy 9’0 7'gns

n=0, 7/4, m+2

(A12)

b
2 Xnd)lnv

d)l - Gw()

n=0, 7/4, m+2

where g, and ¢,, satisfy the following normalized lin-
ear equations

d 8in ng dgln
n ——1—U+n

e’ ot { (+mgz dé

(A13)
3 g 3 d gin
+\ o +n)gn—F + =0
(4 )gl aZ " a8y
dzd)ln 3 d(rbln 3 d(/)()
dfz Zg() df +Zglnd_é
(A14)
dgo d(/)o
n—yz | — 0
[ i 8ge
with the normalized boundary conditions
dg() dgln
¢0_1:¢1_]:g0:gln:_: =
" ¢ d¢ (A15)
até =0
dg() dgln
d_ﬁ = E =¢y=¢;, =0 foré—o0. (A16)
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The nondimensional heat flux 36/dn|, is then, up to
the first order in o
00 04 ¢ 04 do,
8_1’]|0 =Y 3_é|0 = Yo d_élo
(A17)
ol d
4 w0 Z buy" —32” lo + 0(~2)
n=0, 7/4, m+2
or
30 o
—lo=—00Go— 2L > by"Gi(n) + O,
an o,
n=0, 7/4, m+2
(A18)
where
do,
G =—".
1(n) dn lo
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